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Abstract

The slip between an elastic layer and a half-space caused by an anti-plane wave of arbitrary form is examined. The

incident wave is assumed to be sufficiently strong so that friction may be broken, and the local slip may take place at the

interface. The analysis is restricted to the sub-critical angle of incidence. Fourier analysis is employed to cast the mixed

boundary value problem to a recurrence relation. The calculation of the local slip velocities and the interface traction,

together with the determination of the extent and location of slip zones, which are unknown before the solution of the

problem, are discussed. As an example, a parabolic pulse incident wave is considered. The distribution of the slip zones, the

interface shearing traction and slip velocities are calculated in detail. The results show that the problem involves a lot of

features different from those for an infinite medium due to the existence of the free surface of the elastic layer. For instance,

multiple slip zones may appear due to the reflection of waves at the free surface, and the slip zones become closer and closer

when the thickness of the layer decreases. On the other hand, when the thickness of the layer is infinity, the distances

between the slip zones become infinitely large, and the results reduce to those obtained for the infinite medium.

r 2005 Published by Elsevier Ltd.
1. Introduction

Consider two solids bonded with friction. An elastic wave strikes the interface from one solid. If the wave is
strong enough, the friction may be broken and some local slip and separation may take place at the interface.
The problem is of practical importance in seismology, earthquake engineering and mechanics of laminated
composites, etc. It is known, however, that the local slip and separation intervals are unknown before the
solution of the problem, and therefore the mathematical procedure is very difficult. Few literatures can be
found concerning this kind of problem. Miller [1] and Miller and Tran [2,3] analyzed the transmission of
elastic waves through a frictional contact interface by using an approximate method—the method of
equivalent linearization developed by Iwan [4] in a general sense. They restricted the analysis to the sub-critical
angle of incidence and neglected the possible separation of the interface by assuming that the pressure is
sufficiently large. Comninou et al. developed an exact approach based on the Fourier analysis and made an
extensive investigation on this kind of problems. Their works include the interaction of a harmonic or
ee front matter r 2005 Published by Elsevier Ltd.
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inharmonic wave (SH, P or SV) with a smooth or frictional contact interface [5–13] and the surface waves
propagating along such interfaces [14,15]. The presence of local separations is considered and the analysis is
allowed for both sub-critical and super-critical angle of incidence. The contact interface (smooth or frictional)
is termed ‘unilateral interface’ by Comninou et al. because the boundary conditions involve inequalities. The
associated problem is termed ‘unilateral problem’. Relatively, the welded interface and the associated problem
are called, respectively, ‘bilateral interface’ and ‘bilateral problem’. Comninou et al. discovered many new
aspects in physics of the unilateral problems. For instance, the reflected and refracted waves are distorted in
relation to the incident wave and contain modes of all higher frequencies. Using the exact method, we studied
the re-polarization of elastic waves at a frictional interface, which is another interesting phenomenon for
unilateral problems [16–18].

It is noted, however, that all of the above mentioned works are restricted to the case of an infinite medium.
When one of the half-spaces is replaced by a layer of finite thickness, the mathematical procedure will become
very complex due to the involved characteristic length. Few papers can be found to attack such problems
except the one by Miller [19], which analyzed the propagation of Love-type surface waves in an elastic layer
bonded by Coulomb friction to an elastic half-space and obtained the asymptotic results when the attenuation
in the system is very small. Recently, we studied the propagation of harmonic SH waves in a layered half-space
with a frictional contact interface by employing the exact method similar to that of Comninou and Dundurs’
[20,21]. It is shown that the results are drastically different from those for two semi-infinite dissimilar media
because of the presence of the characteristic length. In this paper, we will extend the method to the interaction
between an elastic layer and a half-space with a frictional interface under the action of an SH wave of arbitrary
form for the sub-critical angle incident case.

2. Problem formulation

The problem treated here is shown in Fig. 1. An elastic layer with thickness H is forced on an elastic half-
space by the applied pressure p0 and at the same time loaded by the shearing traction q0. Let m and c represent
the shear modulus and the transverse wave speed, respectively. The asterisk refers to the quantities of the layer.
An SH wave with arbitrary form strikes the frictional contact interface from the half-space at the angle of
incidence y0. The Coulomb friction model, with static and kinetic friction coefficients as f s and f k, is adopted.
n = 0 n = 1

n = 2n = 3 x

y

�0 �1

q0

p0

�,c

c*
H�3 �2

�*

Fig. 1. An SH wave strikes a frictional contact interface at the angle of incidence y0 between an elastic layer and a half-space. n ¼ 0,1,2,3

indicates the incident, reflected and refracted waves, respectively.



ARTICLE IN PRESS
G.-L. Yu et al. / Journal of Sound and Vibration 294 (2006) 238–248240
Generally f kpf s. The indices (1), (2), (3) which may appear as superscripts are used to distinguish various
refracted and reflected waves. If we denote the shear traction and slip velocity at the interface as S and V, the
unilateral boundary conditions can be written as

jSj ¼ f kp0; signðSÞ ¼ signðV Þ (1)

in the slip zones, and

V ¼ 0; jSjpf sp0 (2)

in the stick zones. It is assumed that the wave has propagated for such a long time that the system is in steady
state. The incident wave is taken as an arbitrary form

uð0Þz ¼ F 0ðB0Þ, (3)

where

B0 ¼ kðx sin y0 þ y cos y0 � ctÞ (4)

with k representing the wavenumber. It is seen that the disturbance caused by the incident wave propagates
along the interface at the velocity v ¼ c= sin y0. Therefore, we may formulate the problem in the moving
coordinates ðZ; yÞ, where

Z ¼ B0jy¼0 ¼ kðx sin y0 � ctÞ. (5)

We construct the solution by adding a corrective solution to the results for the bilateral interface. Denote
the bilateral solution as ðuz; tyzÞ and the corrective solution as ðūz; t̄yzÞ. Then the unilateral solution is
ðuz; tyzÞ þ ðūz; t̄yzÞ. Thus. V and S may be expressed as

V ðZÞ ¼ _̄u
ð2Þ
z þ

_̄u
ð3Þ
z �

_̄u
ð1Þ
z

h i
y¼0

, (6)

SðZÞ ¼ q0 þ ½tyz�y¼0 þ ½t̄
ð1Þ
yz �y¼0 ¼ q0 þ ½tyz�y¼0 þ ½t̄

ð2Þ
yz þ t̄ð3Þyz �y¼0, (7)

where ½tyz�y¼0 is the shearing traction generated by the incident wave at a bilateral interface which is given in
the next section.

Comninou and Dundurs [9] demonstrated that Snell’s law holds for both bilateral and unilateral interfaces.
Thus, we have

y1 ¼ y0; y2 ¼ y3; c= sin y0 ¼ c�= sin y2. (8)

When y04ycr ¼ sin�1ðc=c�Þ the incident wave is totally reflected. The angle ycr is termed critical angle. In the
present paper, we only consider the sub-critical angle of incidence.

3. Bilateral solution for sub-critical angle of incidence

Consider an incident wave with the form given in Eq. (3). Then the reflected and refracted waves have the
forms

uðnÞz ¼ FnðBnÞ; n ¼ 1; 2; 3, (9)

where Bn are given by

B1 ¼ kðx sin y1 � y cos y1 � ctÞ,

Bn ¼ k�ðx sin yn þ ð�1Þ
ny cos yn � c�tÞ; n ¼ 2; 3 ð10Þ

and FnðBnÞ are undetermined functions.
For a bilateral interface, i.e. a welded interface, the traction and displacement are continuous, which gives

m
quð0Þz

qy
þ

quð1Þz

qy

� �
¼ m�

quð2Þz

qy
þ

quð3Þz

qy

� �
; y ¼ 0. (11)
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uð0Þz þ uð1Þz ¼ uð2Þz þ uð3Þz ; y ¼ 0. (12)

The traction free condition on the surface gives

quð2Þz

qy
þ

quð3Þz

qy
¼ 0; y ¼ H. (13)

Substitution of Eqs. (3) and (9) to Eqs. (11)–(13) yields

D F 00ðZÞ � F 01ðZÞ
� �

¼ F 02ðZÞ � F 03ðZÞ, (14)

F 0ðZÞ þ F 1ðZÞ ¼ F2ðZÞ þ F3ðZÞ, (15)

F 02ðZþ gÞ ¼ F 03ðZ� gÞ, (16)

where

g ¼ k�H cos y2; D ¼ mc� cos y0=ðm�c cos y2Þ. (17)

Set f nð Þ ¼ F 0nð Þ; ðn ¼ 0; 1; 2; 3Þ. Then Eqs. (14)–(16) can be rewritten as

D f 0ðZÞ � f 1ðZÞ
� �

¼ f 2ðZÞ � f 3ðZÞ, (18)

f 0ðZÞ þ f 1ðZÞ ¼ f 2ðZÞ þ f 3ðZÞ, (19)

f 3ðZÞ ¼ f 2ðZþ 2gÞ (20)

from which one can derive

2Df 0ðZÞ ¼ ð1þ DÞf 2ðZÞ � ð1� DÞf 2ðZþ 2gÞ. (21)

This is a recurrence relation from which f 2ðZÞ and f 3ðZÞ can be determined as follows:

f 2ðZÞ ¼
2D

1þ D

Xm

i¼0

1� D
1þ D

� �i

f 0ðZþ 2igÞ, (22)

f 3ðZÞ ¼
2D

1þ D

Xm

i¼0

1� D
1þ D

� �i

f 0ðZþ 2ði þ 1ÞgÞ, (23)

where m is given by

Zþ 2ðmþ 1ÞgX1; Zþ 2mp1. (24)

As an example we suppose the incident wave has a parabolic form

uð0Þz ðB0Þ ¼ F 0ðB0Þ ¼ C0ð1� B20ÞHð1� jB0jÞ, (25)

where C0 in the above equation is a parameter with the same dimension of the displacements. Hð�Þ is the
Heaviside function. Then we have

tð0Þyz ðB0Þ ¼ mk cos y0f 0ðB0Þ ¼ mk cos y0C0ð1� B20ÞHð1� jB0jÞ ¼ A0ð1� B20ÞHð1� jB0jÞ, (26)

where

A0 ¼ mk cos y0C0. (27)

So the shearing traction on the bilateral interface is obtained:

½tyz�y¼0 ¼ m � k � cos y2½f 2ðZÞ � f 3ðZÞ� ¼ A0f ðZÞ (28)

with

f ðZÞ ¼
2

ð1þ DÞC0
f 0ðZÞ �

2D
1þ D

Xm

i¼1

1� D
1þ D

� �i�1

f 0ðZþ 2igÞ

( )
. (29)
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For D ¼ 1, the above equation reduces to

f ðZÞ ¼
1

C0
½f 0ðZÞ � f 0ðZþ 2gÞ�, (30)

where A0 is a constant with the dimension of stresses and thus f ðZÞ is of non-dimension.

4. Unilateral solution for sub-critical angle of incidence

For sub-critical angle of incidence, the governing equations in the moving coordinates are given by

�ðk cos y0Þ
2 q

2ūð1Þz

qZ2
þ

q2ūð1Þz

qy2
¼ 0, (31)

�ðk� cos y2Þ
2 q

2ūðnÞz

qZ2
þ

q2ūðnÞz

qy2
¼ 0; n ¼ 2; 3, (32)

where k� ¼ o=c�. Using Fourier transform technique, one may obtain

ūðnÞz ¼ Re

Z 1
0

FnðsÞe
isBn ds; n ¼ 1; 2; 3, (33)

where

B1 ¼ kðx sin y1 � y cos y1 � ctÞ,

Bn ¼ k�ðx sin yn þ ð�1Þ
ny cos yn � c�tÞ; n ¼ 2; 3. ð34Þ

FnðsÞ in Eq. (33) is complex and may be written as DnðsÞ þ iEnðsÞ with Dn and En being real. Note that the
integral from �1 to 0 does not appear because the waves propagate in the positive x-direction.

The boundary conditions at the surface y ¼ H and the requirement that the shearing traction is continuous
across the interface ðy ¼ 0Þ lead to

F1ðsÞ ¼ 2iD�1 sinðsgÞeisgF 2ðsÞ; F3ðsÞ ¼ e2isgF 2ðsÞ. (35)

Substituting Eq. (33) into Eqs. (6) and (7), and taking the real parts, we have

V ðZÞ ¼ �kc

Z 1
0

s½MðsÞ sinðsZÞ þNðsÞ cosðsZÞ�ds, (36)

SðZÞ ¼ q0 þ A0f ðZÞ þ mk cos y0

Z 1
0

s½D1ðsÞ sinðsZÞ þ E1ðsÞ cosðsZÞ�ds; (37)

where

MðsÞ ¼ �D cotðsgÞE1ðsÞ þD1ðsÞ; NðsÞ ¼ E1ðsÞ þ D cotðsgÞD1ðsÞ. (38)

Set fðZÞ ¼ �ðkcÞ�1V ðZÞ. It follows from Eq. (36) that

MðsÞ;NðsÞ
� �

¼
1

ps

Z þ1
�1

fðxÞ sinðsxÞ; cosðsxÞ
� �

dx. (39)

Then Eq. (37) reduces to

SðZÞ ¼ q0 þ A0f ðZÞ þ
1

2p
mk cos y0

Z þ1
�1

fðxÞPðx; ZÞdx, (40)

where

Pðx; ZÞ ¼
Z þ1
�1

L�1ðsÞ ½1� cosð2sgÞ� cos½sðZ� xÞ� þ D sinð2sgÞ sin½sðZ� xÞ�
� �

ds (41)



ARTICLE IN PRESS
G.-L. Yu et al. / Journal of Sound and Vibration 294 (2006) 238–248 243
with

LðsÞ ¼ ðD2 þ 1Þ þ ðD2 � 1Þ cosð2sgÞ. (42)

Expressing L�1ðsÞ as a Fourier series in terms of 2sg:

L�1ðsÞ ¼
1

2D
þ

1

D

X1
n¼1

1� D
1þ D

� �n

cosð2nsgÞ (43)

and using the relation Z þ1
�1

cosðsxÞds ¼ 2pdðxÞ, (44)

we obtain

SðZÞ ¼ q0 þ A0f ðZÞ þ
mk cos y0
1þ D

fðZÞ � 2
X1
n¼1

Dð1� DÞn�1

ð1þ DÞn
fðZþ 2ngÞ

" #
; Da1. (45)

For D ¼ 1, Eq. (40) reduces to

SðZÞ ¼ q0 þ A0f ðZÞ þ
mk cos y0

2
fðZÞ � fðZþ 2gÞ½ �. (46)

The unilateral interface conditions (1) and (2) lead to

fðZÞ ¼ 0 (47)

in the stick zones, and

mk cos y0
1þ D

fðZÞ � 2
X1
n¼1

Dð1� DÞn�1

ð1þ DÞn
fðZþ 2ngÞ

" #
¼ �q0 � A0f ðZÞ � f kp0; Da1 (48)

in the slip zones. For D ¼ 1, we have

mk cos y0
2

fðZÞ � fðZþ 2gÞ½ � ¼ �q0 � A0f ðZÞ � f kp0. (49)

Unlike the resulting equation for an infinite medium [11], Eq. (48) or (49) is a recurrence relation which
relates the slip velocity at Z to that at Zþ 2g. The parameter g is nothing but the number of the waves with the
width ðk� cos y2Þ

�1 included in the thickness H of the layer. It can be also interpreted as the phase difference
of the wave motion between the interface and the free surface. It embodies the effects of the characteristic
length H. A numerical example will be given next.
5. Numerical examples and discussion

As a simple example, we suppose q0 ¼ 0, and the incident wave is taken as a parabolic pulse given by
Eq. (25).

It is shown in Ref. [11] that only a single slip zone may occur in the region (�1,1) for an infinite
medium. However, additional slip zones may appear beyond the region (�1,1) in the present case. The
slip zone in the region (�1,1) is called the ‘main slip zone’ and denoted by the interval ða; bÞ. The leading edge
b is determined by SðbÞ ¼ f sp0 and locates between 0 and 1. Local slip cannot take place in the region Z4b in
any case and therefore fðZÞ ¼ 0 for Z4b. Furthermore, we have SðZÞ ¼ A0f ðZÞ þ q0 for Z4b where f ðZÞ is
given by Eq. (29). Other values of fðZÞ for Zob can be obtained by the recurrence relation (48) or (49).
The condition SðZÞ ¼ f sp0 gives the leading edges of the slip zones and the condition fðZÞ ¼ 0 yields the
trailing edges.

As we know the local slip may take place when f sp0 is lower than the absolute maximum value
of the interface shearing traction. To determine the location of the slip zones for a given value of f sp0 (or f kp0),
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we suggest the following steps:
(i)
 decrease f sp0 by a small value from the maximum value of corresponding bilateral shearing traction, then
make a guess of the slip zones using the bilateral solution as a guidance;
(ii)
 derive the interface shearing traction and slip velocities from Eqs. (45) to (49) by recurrence;

(iii)
 check whether the solution satisfies the boundary conditions (1) and (2); if yes, go to the next step; if no,

the guessed slip zones should be corrected easily by reassuming the corresponding state conversely, then
go back to step (ii);
(iv)
 again decrease f sp0 by a small value and make a guess of slip zones based on the bilateral solution and the
solution obtained in the previous steps;
(v)
 repeat steps (ii)–(iv).
It is seen that the solution of the problem mainly depends on the parameters D, g, q0=A0, f sp0=A0 and
f kp0=A0. Next we will give some numerical results and discuss the effects of parameters D, g and the kinematic
locking on the solutions in detail.

5.1. The effects of parameter g

For simplicity we neglect the kinematic locking (i.e. f s ¼ f k) in calculation. Fig. 2 illustrates curves
determining the extent and location of the slip zones for given values of f kp0=A0 with g ¼ 0:5; 1; 2 and D ¼ 2.
Figs. 3 and 4 are the same but for D ¼ 1 and 0:5. The symbols ‘+’ and ‘�’ denote the positive and negative slip
direction, respectively. The shearing traction and slip velocity are shown in Fig. 5 for g ¼ 0:5; 1 with
f kp0=A0 ¼ 0:375 and D ¼ 1. It is seen that one or more additional slip zones with opposite slip direction
appears at the left of the main slip zone. As g decreases, these slip zones become closer and closer and sharp
tips occur. We believe that these behaviors are resulted by the reflection of waves at the free surface y ¼ H.
-6 -4 -2 0 2
0.0

0.5

1.0

1.5

f k
p 0

/A
0

(b)

- +

-6 -4 -2 0 2
0.0

0.5

1.0

1.5

(a)

f k
p 0

/A
0

- - +

-6 -4 -2 0 2
0.0

0.5

1.0

1.5

f k
p 0

/A
0

(c)

- +

� �

�

Fig. 2. Extent and location of the slip zones varying with f kp0=A0 for D ¼ 2: (a) g ¼ 0:5; (b) g ¼ 1; (c) g ¼ 2.
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Fig. 3. Extent and location of the slip zones varying with f kp0=A0 for D ¼ 1; (a) g ¼ 0:5; (b) g ¼ 1; (c) g ¼ 2.
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Fig. 4. Extent and location of the slip zones varying with f kp0=A0 for D ¼ 0:5: (a) g ¼ 0:5; (b) g ¼ 1; (c) g ¼ 2.
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This is understood if we consider the physical meaning of the parameter g that has been mentioned before. In
the limiting situation of H !1, the distance between the slip zones will become infinitely large, and the
results reduce to those obtained by Comninou and Dundurs [11] for an infinite medium.
5.2. The effects of parameter D

We can easily see the effects of parameter D on the solution by comparing the curves with the same value of
g in Figs. 2–4. It is shown that a larger D will lead more local slip regions except in the interval (�1,1). As the
parameter D increases, the shearing traction and the slip velocity in the main slip zone is strongly weakened
due to the appearance of the additional slip zones. For example, in Fig. 2, when the non-dimensional frictional
force is greater than a certain value, say 0.65, the additional slip zone exists while the main slip zone
disappears. This behavior coincides with the physical meaning of the parameter D that can be interpreted as
the normal wave resistance ratio of the half-space to the layer. It characterizes the difficulty of the wave
transmission across the interface. The smaller the value of D is, the more difficult it is for the waves to transmit
from the half-space to the layer.

The shearing traction and slip velocity are shown in Fig. 6 for D ¼ 2; 1; 0:5 when f kp0=A0 ¼ 0:375. In the
region (�1,1), the slip velocity is smaller for a larger value of D. It is worth noting that the slip velocity in the
main part of the additional slip zones remains a constant due to the reflection of waves at the free surface. It is
an interesting case for D ¼ 1 shown in Fig. 5 that the shearing traction in an interval at the left of the main slip
zone is equal to the slip frictional force, but the slip velocity is zero. We call this case ‘critical slip state’ and
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denote the interval by dashed lines in Fig. 3. It can be derived from Eqs. (46) and (49) that the critical slip
zones will exist only if the parameter D is 1.

5.3. The effects of kinematic locking

Fig. 7 shows the shearing traction and slip velocity for D ¼ 2 and g ¼ 2 with consideration of the kinematic
locking ðf s4f kÞ. As in Ref. [11] for an infinite medium, the kinematic locking results in the discontinuities in
the shearing traction and slip velocity at the leading edges of the slip zones. It is easily understood that less slip
zones may occur in some cases due to the kinematic locking.
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